Fast Bivariate P-splines: the Sandwich Smoother
نویسندگان
چکیده
We propose a fast penalized spline method for bivariate smoothing. Univariate Pspline smoothers Eilers and Marx (1996) are applied simultaneously along both coordinates. The new smoother has a sandwich form which suggested the name “sandwich smoother” to a referee. The sandwich smoother has a tensor product structure that simplifies an asymptotic analysis and it can be fast computed. We derive a local central limit theorem for the sandwich smoother, with simple expressions for the asymptotic bias and variance, by showing that the sandwich smoother is asymptotically equivalent to a bivariate kernel regression estimator with a product kernel. As far as we are aware, this is the first central limit theorem for a bivariate spline estimator of any type. Our simulation study shows that the sandwich smoother is orders of magnitude faster to compute than other bivariate spline smoothers, even when the latter are computed using a fast GLAM (Generalized Linear Array Model) algorithm, and comparable to them in terms of mean squared integrated errors. We extend the sandwich smoother to array data of higher dimensions, where a GLAM algorithm improves the computational speed of the sandwich smoother. One important application of the sandwich smoother is to estimate covariance functions in functional data analysis. In this application, our numerical results show that the sandwich smoother is orders of magnitude faster than local linear regression. The speed of the sandwich formula is important because functional data sets are becoming quite large.
منابع مشابه
Fast covariance estimation for sparse functional data
Smoothing of noisy sample covariances is an important component in functional data analysis. We propose a novel covariance smoothing method based on penalized splines and associated software. The proposed method is a bivariate spline smoother that is designed for covariance smoothing and can be used for sparse functional or longitudinal data. We propose a fast algorithm for covariance smoothing...
متن کاملApproximation and geometric modeling with simplex B-splines associated with irregular triangles
Bivariate quadratic simplicial B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a Cl-smooth surface. The generation of triangle vertices is adjusted to the area1 distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-s...
متن کاملSome smoothness conditions and conformality conditions for bivariate quartic and quintic splines
This paper is concerned with a study of some new formulations of smoothness conditions and conformality conditions for multivariate splines in terms of B-net representation. In the bivariate setting, a group of new parameters of bivariate quartic and quintic polynomials over a planar simplex is introduced, new formulations of smoothness conditions of bivariate quartic C1 splines and quintic C2 ...
متن کاملFast covariance estimation for high-dimensional functional data
We propose two fast covariance smoothing methods and associated software that scale up linearly with the number of observations per function. Most available methods and software cannot smooth covariance matrices of dimension J > 500; a recently introduced sandwich smoother is an exception but is not adapted to smooth covariance matrices of large dimensions, such as J = 10, 000. We introduce two...
متن کاملTurboNorm: A fast scatterplot smoother with applications for microarray normalization
This vignette show how piecewise constant P-splines [1] can be used for normalization of either singleor two-colour data. The pspline()-function can be used for two-colour data objects of type RGList and MarrayRaw from respectively from limma [2] and from the package marray . For single colour microarray data wrapper functions are writting based on the affy [3] functions normalize.loess() and n...
متن کامل